

UmszA	204.18 v			- 3	00 v 🍣	500
IrmsEA	528.65mA	2 54410 Hittan				
ΡΣΑ	29.93 w	A first II block host		000	BISPLAY ITEN	A RADINGST TORONT
SZA	186.96 VA	6 Constant	-	00	(2145) (214) (11)	
QΣA	197.18 var	Bernill Mergener				
λΣΑ	0.1601	9 100/ 10 Bread Mag Seat		I I I I		
fU1	44.727 Hz	11 Internet in the second seco				
71	83.852 *		-			
(bobte 31 (66brec)			-		-	
	Umes2A IrmsΣA ΡΣΑ ΣΣΑ ΩΣΑ λΣΑ 1U1 η1 2000 17 000000	Umss2A 204.18 v Irms2A 528.65mA PΣA 29.93 W SΣA 186.96 vA QΣA 197.18 var λΣA 0.1601 1 14.727 Hz 71 83.852 %	Ums2A 204.18 v Ims2A 528.65mA Ims2A PΣA 29.93 Ims2A SΣA 186.96 VA QΣA 197.18 Var λΣA 0.1601 Ims2A τ 44.727 Hz τ 83.852 %	Umms2A 204.18 V Imms2A 528.65 mA Imms2A PΣA 29.93 Imms2A SΣA 186.96 VA QΣA 197.18 Var λΣA 0.1601 Imms2A 1U1 44.727 Hz 71 83.852 %	Ums2A 204.18 v Ims2A 528.65mA PΣA 29.93 SΣA 186.96 QΣA 197.18 NZA 0.1601 1U1 44.727 Hz 1000000000000000000000000000000000000	Ums2A 204.18 v Ims2A 528.65 mA PΣA 29.93 SΣA 186.96 QΣA 197.18 NZA 0.1601 101 44.727 N1 83.852

Broad Ranging Power Measurements with One Unit

Basic Power Accuracy DC Power Accuracy Voltage/Current Bandwidth 5 MHz*1 (-3 dB, Typical) **Sampling Rate Input Elements** Current Measurement Fast data Capturing

±0.1% ±0.05% 2 MS/s (16-bit) Max. 6 100 µ A to 55 A 5 ms Response *Max.1ms (When External Sync ON)

Innovative Functions Help Improve Measurement Efficiency

Motor, Inverter, Lighting, EV/HEV, Battery, Power Supply, Aircraft, New Energy, Power Conditioner

For more information, please visit. tmi.yokogawa.com **Test & Measurement Instruments**

*1: Excluding direct current input with the 50 A input element Bulletin WT1800-00EN

High Performance Power Analyzer WT1800

New WT1800 Precision Power Analyzer Offers High-performance, Wide-range, and 6 Power Inputs

New Functions Greatly Help Improve Measurement Efficiency

Support for Energy Conservation Technologies and Sustainable Energy Development

Dual Harmonic Measurement First in industry

The perspective of the efficient use of energy is boosting demand for inverters to convert 50 Hz or 60 Hz AC power to DC power, grid connection controllers to control reverse power flow occurring due to excess power, and battery chargers/dischargers.

The WT1800 is capable of simultaneous measuring the harmonic distortion of the input and output current of these devices Challenging the common wisdom that 'harmonic measurement is limited to a single line," the WT1800 is capable of performing two-line simultaneous harmonic measurements. The WT1800 is also capable of measuring up to the 500th order harmonic even at high fundamental frequencies such as a 400 Hz frequency. For details, see Pages 5 and 6

Many features are available that are a first in the power measurement industry *1

Rear panel

First in industry

NEW

NEW

First in industr

anh shows the model with the /MTR ontion

Manyfeaturesereevellable that are a first in the power measurement industry

Measureme	High-precision, wide-range, fast-sampling, simultaneous harmonic measurement
5-fold wider than previous model	• Voltage and current frequency bandwidth 5 MHz (-3 dB, typical) Faster switching frequencies increasingly require measurements in a wider range. The WT1800 provides a voltage and current frequency bandwidth (5 MHz) 5-fold wider than the previous measurement range and is capable of more correctly capturing fast switching signals.
2/3 of previous model	• Reduction of low power-factor error to 0.1% of apparent power (2/3 of previous model) A power-factor error is one of the important elements to ensure high-accuracy measurements even at a low power factor. The WT1800 has achieved a power-factor error (0.1%) that is 2/3 of the previous model, in addition to a high basic power accuracy of ±0.1%.
Inheritance	• Wide voltage and current range allowing direct input Direct input of measurement signals makes it possible to measure very small current that can hardly be measured with a current sensor. The WT1800 provides a direct input voltage range from 1.5 V to 1000 V (12 ranges) and a direct input current range from 10 mA to 5 A (9 ranges) or from 1 A to 50 A (6 ranges).
5-fold wider than revious model	• 0.1 Hz low-speed signal power measurement and max. 50 ms high-speed data collection The frequency lower limit has been reduced to 0.1 Hz from the previous 0.5 Hz (5-fold lower than the previous model) to meet the requirement for power measurements at a low speed. Furthermore, high-speed data collection at a data update rate of up to 50 ms has been inherited. In addition to normal measurement data, up to the 500th order harmonic data can be measured and saved simultaneously. The data update rate can be selected from nine options from 50 ms to 20 s. * Harmonic measurement at the 50 ms data update rate is possible up to the 100th order.
First in industry	• Particular voltage and current range selectable Wide voltage and current input ranges have the advantage of extending the measurement application range. However, the downside is that the response time of the auto range tends to slow down. A range configuration function solves this problem. Since only the selected range (effective measurement range) can be used, the range can be changed up or down more quickly. Pages 5
NEW	• msec response for transient phenomena analysis (/HS option) The /HS option provides fast data capturing with ms response. Current WT series can measure three phase values like voltage, current and power every 50ms period correctly, however, 50ms data update rate is not enough for analyzing transient phenomena of motors and other devices recently.
* Comparison with Volcage	w/a provinue model WE1600 *1: Applicable to a general-purpose binb-precision three-phase power applyzer as of February 2011 (according to Vokongwa's surgery)

New functions greatly support power measurements Functions

 Dual harmonic measurement (option) The industry's first two-line simultaneous harmonic measurement is available, in addition to simultaneous measurement of harmonic and normal measurement items such as voltage, current, and power values. Previously, harmonic measurements of input and output signals had to be performed separately. With the WT1800, harmonic measurements of input and output can be performed simultaneously.

• Two-channel external signal input is available for power measurement and analog signal data measurement (option available in combination with the motor evaluation function) Power measurements can be performed together with physical quantity data such as solar irradiance or wind power in wind generation

• Electrical angle measurement is also supported. Motor evaluation function allowing A-phase, B-phase, and Z-phase inputs (option available in combination with external signal input) Pulse or analog signals can be input for rotation speed and torgue signal measurements. The motor evaluation function of the WT1800 makes it possible to detect the rotation direction and measure the electrical angle, which is not possible with Yokogawa's previous model

Saving/Communication

User-defined event function

• GP-IB, Ethernet, and USB communication functions available as standard

List of Available Functions 1-50A 10mA-5A 1.5-1000V 1MHz Standard feature ○ Option USB memory ○ Software (sold separately ÷

www.valuetronics.com

First in industry

Customize Display Screen

With Yokogawa's previous power analyzer model, you have to select numerical formats such as 4-value, 8-value, and 16-value view to display screens, so you cannot flexibly display a screen to view the desired parameter in the desired size and at the desired posi

The WT1800 has broken the mold and is capable of reading user-created image files (BMP) as display screens to allow viewing data in a flexible format. Thus the display screen can be customized in a

more user-friendly and easy-to-read

-	Part Int	Les (burn	- 11 -
Element I Voltage ma	Current uns	Power	
99.88	0.5472	28,58	
44 0.14 90.39 94.90	0.0002 0.2155 0.5472		
139.69 -139.07	1.8058	man 216.89 min 0.03	-
	Current frequency		-
	Ah		Ten Los. Ten Tor
	An-		1.000

For details, see Pages 5

For the first time in the high-precision power analyzer industry, an event trigger function is available to meet the requirement to capture only a particular event. For example, a trigger can be set for measured values that fall out of the power value range from 99 W to 101 W and only data that meets the trigger condition can be stored, printed, or saved to a USB memory device.

For details, see Pages **4** and **8**

For details, see Pages **5** and **6**

For details, see Pages **9**

For details, se Pages **7**

First in industry means functions and canabilities available for the first time in the high-precision three

Applications

Keyword

Energy generated by photovoltaic cell modules and wind turbines is converted from DC to AC by a power conditioner. Furthermore, the voltage is converted by a charge control unit Overview for the storage battery. Minimizing losses in these conversions improves efficiency in the overall energy system. The WT1800 is capable of providing up to 6 channels of power inputs per unit to make it possible to measure the voltage, current, power, and frequency (for AC) before and after each converter, as well as converter efficiency and charging efficiency.

Advantages of WT1800

Max. 1000 V/50 A × 6-line direct measurement

Power integration (power sold and bought/charge and discharge)

modes

power fluctuates greatly.

Trigger when an error occurs (User-defined event function)

and save it to the memory.

measurements

Average active

when an

rror occi

Direct input terminals in a voltage range from 1.5 V to 1000 V and current range from 10 mA to 5 A or 1 A to 50 A make it possible to perform high-precision measurements without using a current sensor

Furthermore, power conditioner evaluation requires multiple-channel power measurements, such as inputs/outputs from a boost converter, inverter, and storage battery. The WT1800 is capable of providing up to 6 channels of power inputs to make it possible to simultaneously perform power measurements at multiple points with one unit. In addition, two units can be operated in synchronization for multi-channel power evaluation

A power integration function makes it possible to measure the

integration (q), apparent power integration (WS), reactive power

calculate the Average active power within the integration period.

This makes it possible to more accurately measure the power

consumption of an intermittent oscillation control unit in which

An event trigger function is helpful in verifying that voltage or current changes are within the design tolerance range. Setting

the normal power generation range as a judgment condition

(trigger) detects measurement data that falls out of that range

integration (WQ), as well as effective power integration capable of

amount of power sold/bought in grid interconnection and of

battery charge/discharge. The WT1800 provides a current

integration in the power sold/bought and charge/discharge

Furthermore, a user-defined function makes it possible to

Maximum Power Peak Tracking (MPPT) measurement

measured

In photovoltaic power generation, an MPPT control is performed to effectively utilize voltage generated by photovoltaic cells in an attempt to maximize the harvested power. The WT1800 is capable of measuring not only the voltage. current, and power but also the voltage, current, and power peak values (plus (+) and minus (-) sides, respectively). Also, the maximum power peak value (plus (+) and minus (-) sides) can be

Nerod Hon	THOMAS -	and a second	Les fibers line Provi	NE 182
Unet	97.52	Urne SA	80.58 .	Present 1 area
Inist	0.3166 *	ine23	0.5288 *	140004 III.
Pt [28.39	P2A	21.66	4 incetii 5 mg say
P-pk1	79.16	Pet2	72.25	G Des Schl
P-pe1	20.73	P##3	33.94	Rent 5 cm
XI [0.9196	Patt	34.02	Description
•	G23.13-			
rut	50.003 iei	-	21.612	

Ripple factor and power loss measurements using user-defined function

A user-defined function makes it possible to compute not only the conversion efficiency but also the power loss, DC voltage and DC current ripple factors between the input and output. This is helpful in multiplying a factor or slightly changing the arithmetic expression according to the purpose. Up to 20 arithmetic expressions can be set. Display names for the arithmetic operations F1, F2, and so on can be changed freely.

[(Voltage peak value (+) - Voltage peak value (-))/2 × DC voltage value (mean)] × 100 2. Power loss = Output power - Input power

Typical Product Configuration *For detailed specifications, see the page on the specifications. You need to provide a cable for voltage measurements when wiring Direct input measurements at less than 50 A: WT1806-06-F-HE/EX6/B5/G6/AUX

6 power inputs, current measurement range 10 mA to 55 A, or clamp measurement (with clamp input terminals), built-in printer, dual harmonic, auxiliary input Measurement at more than 50 A using a current sensor: WT1806-60-F-HE/EX6/B5/G6/AUX 6 power inputs, current measurement, built-in printer, dual harmonic, external signal input

* Lamp current can be obtained either by measuring the output of a wide range current sensor as shown in the figure, or by obtaining the differential current using computation (delta computation function).

Overview

Advantages of WT1800 • An external input terminal (EX) allows you to perform both direct input measurement and clamp measurement.

using a current sensor, or by using the delta computation of the WT1800 (/DT option). Note: Tube current is obtained by the computation of a difference in the

measurement), DA output *Direct input and current sensor input cannot b

eous values instead of the effective current values

Tube current measurements of fluorescent lamps Light emitting efficiency and power measurements (/DT option) of LED lights (/AUX option)

A ballast uses harmonic frequency signals to illuminate the fluorescent lamp. The frequency is generally as fast as tens of kHz. A wide range capability of power measurement is important to reliably capture the signals. Also, since tube current cannot be measured directly, it is obtained either by measuring the difference between the output current of the ballast and the cathode current

5 MHz range

Typical Product Configuration *For detailed specifications, see the page on the specifications. You need to provide a cable for voltage measurements when wiring.

Typical measurement of power value (P1), plus (+) side (P+pk) and minus (-) side (P-pk) of max. power peak value

www.valuetronics.com

Harmonic distortion factor (THD) measurement (/G5 and /G6 options)

Voltage fluctuations and harmonic flow into the power system due to reverse power flow. A harmonic measurement function makes it possible to compute and display the harmonic distortion factor (THD) by measuring harmonic components.

Immediately print out screens (/B5 option)

Multiple engineers may want to verify detailed data during a test. A built-in printer makes it possible to print data immediately on the spot and for multiple engineers to verify the data simultaneously

Since the switching frequency of fluorescent lamp is sometimes as fast as approximately tens of kHz, a wide range power measurement is required. Also, sometimes dimming control by a PWM modulation circuit is performed for the LED lights. The WT1800 provides a wide range from DC to up to 5 MHz to allow you to evaluate these kinds of harmonic signals.

It is important for LED lights to increase the light emitting efficiency while at the same time reducing the current and power consumption. The WT1800 allows you to measure voltage, current, and power, as well as compute the light emitting efficiency (lamp efficiency) by connecting the output of an illuminance meter, etc. to the external signal input terminal (/AUX option).

DC/AC	
Light emitting efficiency	100.64 4.9077 1 103.79 1.8865 1 10.258 9.251 9.251 1

WT1806-06-H-HE/EX6/G6/DT/DA: 6 power inputs, current input range 10 mA to 55 A, or clamp measurement (with a clamp input terminal), dual harmonic, delta computation (differential current

Explanations

SUPPORTS Crest Factor 6

The crest factor is the ratio of the waveform peak value and the RMS value.

waveform peak **Crest factor** (CF, peak factor) **RMS value**

When checking the measurable crest factor of our power measuring instruments, please refer to the following equation.

{measuring range×CF setting (3 or 6)} Crest factor (CF) = measured value (RMS)

* However, the peak value of the measured signal must be less than or equal to the continuous maximum allowed input

* The crest factor on a power meter is specified by how many times peak input value is allowed relative to rated input value. Even if some measured signals exist whose crest factors are larger than the specifications of the instrument (the crest factor standard at the rated input), you can measure signals having crest factors larger than the specifications by setting a measurement range that is large relative to the measured

signal. For example, even if you set CF = 3, CF 5 or higher measurements are possible as long as the measured value (RMS) is 60% or less than the measuring range. Also, for a setting of CF = 3, measurements of CF = 300 are possible with the minimum effective input (1% of measuring range).

Calculation Method of Voltage and Current and Procedure to Set Synchronous Source

AC signals are repeatedly changing waveforms in terms of instantaneous values. An averaging calculation by the repeated periods is required to be performed to measure the power value of the AC signals. The WT1800 uses an ASSP method to perform averaging processing by the periods for the instantaneous data measured at an approximately 2 MS/s rate to obtain the measurement value

ASSP Method

An ASSP (Average for the Synchronous Source Period) method is used to calculate the measurement value by performing calculation processing for the sampling data within the data update period (with the exception of the integrated power value WP and integrated current value q in the DC mode). This method uses a frequency measurement circuit to detect the period of the input signal set in the synchronous source and performs calculation using the sampling data in the interval equivalent to the integral multiple of the input period. Since the ASSP method basically is able to obtain the measurement value by just performing an averaging calculation for the interval of one period, it is effective for a short data update period or efficient measurement of low frequency signals. If this method cannot detect the period of the set synchronous source signal correctly, the measurement values will not be correct. Therefore, it is necessary to check to make sure the frequency of the synchronous source signal is measured and displayed correctly. For the notes of the settings of the synchronous source signal and frequency filter, refer to the instruction manual.

Setting Synchronous Source

In the case of such a signal, the synchronous source is set to the current signal side with less harmonic components. Even if harmonic components (noise) are superimposed on the current waveforms, measurements can be stabilized by turning on the frequency filter to detect a zero crossing reliably.

When the frequency measurement results are correct and stable, you can consider the filter settings are right. A frequency filter also functions as a filter to detect a zero crossing of the synchronous source. That's why a frequency filter is also called a synchronous source filter or a zero crossing filter.

Selecting formulas for calculating apparent power and reactive power

There are several types of power-active power, reactive power, and apparent power. Generally, the following equations are satisfied: Active power $P = Ulcos\emptyset$ (1) Reactive power Q = UlsinØ (2) Apparent power S = UI(3)In addition, these power values are related to each other as follows: $(Apparent power S)^2 = (Active power P)^2 + (Reactive power Q)^2$ (4)

- U: Voltage RMS
- L · Current RMS
- Ø · Phase between current and voltage
- Three-phase power is the sum of the power values in the individual phases

These defining equations are only valid for sinewayes. In recent years, there has been an increase in measurements of distorted waveforms, and users are measuring sinewave signals less frequently. Distorted waveform measurements provide different measurement values for apparent power and reactive power depending on which of the above defining equations is selected. In addition, because there is no defining equation for power in a distorted wave, it is not necessarily clear which equation is correct. Therefore, three different formulas for calculating apparent power and reactive power for three-phase four-wire connection are provided with the WT1800

• TYPE1 (method used in normal mode with older WT Series models)

With this method, the apparent power for each phase is calculated from equation (3), and reactive power for each phase is calculated from equation (4). Next, the results are added to calculate the power. Active power: $P\Sigma = P1 + P2 + P3$

Apparent power: $S\Sigma = S1 + S2 + S3 (= U1 \times I1 + U2 \times I2 + U3 \times I3)$ Reactive power: $Q\Sigma = Q1 + Q2 + Q3 (= \sqrt{(U1 \times I1)^2 - P1^2} + \sqrt{(U2 \times I2)^2 - P2^2} + \sqrt{(U3 \times I3)^2 - P3^2})$

*S1, S2, and S3 are calculated with a positive sign for the leading phase and a negative sign for the lagging phase.

• TYPE2

The apparent power for each phase is calculated from equation (3), and the results are added together to calculate the three-phase apparent power (same as in TYPE1). Three-phase reactive power is calculated from three-phase apparent power and three-phase active power using equation (4). Active power: PΣ=P1+P2+P3 Apparent power: $S\Sigma = S1 + S2 + S3 (= U1 \times I1 + U2 \times I2 + U3 \times I3)$

Reactive power: $Q\Sigma = \sqrt{S\Sigma^2 - P\Sigma^2}$

TYPE3 (method used in harmonic measurement mode with WT1600 and PZ4000)

This is the only method in which the reactive power for each phase is directly calculated using equation (2). Three-phase apparent power is calculated from equation (4). Active power: $P\Sigma = P1 + P2 + P3$ Apparent power: $S\Sigma = \sqrt{P\Sigma^2 + 0\Sigma^2}$ Reactive power: Q2=Q1+Q2+Q3

Inputs	Creation
Input terminal type	Voltage
	Plug-in terminal (safety terminal)
	Direct input: Large binding post
Input type	External current sensor input: Insulated BNC connector Voltage
	Floating input, resistive potential method
	Floating input, shunt input method
Measurement range	Voltage 1.5 V.3 V.6 V.10 V.15 V.30 V.60 V.100 V.150 V.300 V.600 V.1000 V.(for crest factor 3)
	0.75 V, 1.5 V, 3 V, 5 V, 7.5 V, 15 V, 30 V, 50 V, 75 V, 150 V, 300 V, 500 V (for crest factor 6)
	Current Orrect input:
	50 A input element
	1 A, 2 A, 5 A, 10 A, 20 A, 50 A (for crest factor 3) 500 mA, 1 A, 2.5 A, 5 A, 10 A, 25 A (for crest factor 6)
	5 A input element 10 mA, 20 mA, 50 mA, 100 mA, 200 mA, 500 mA, 1 A, 2 A, 5A (for crest factor 3)
	5 mA,10 mA, 25 mA, 50 mA, 100 mA, 250 mA, 500 mA, 1 A, 2.5 A (for crest factor 6)
	50 mV, 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V, 10 V (for crest factor 3)
Instrument loss	25 mV, 50 mV, 100 mV, 250 mV, 500 mV, 1 V, 2.5 V, 5 V (for crest factor 6) Voltage
	Input resistance :Approx. 2 MΩ
	Current
	 Direct input: 50 A input element: Approximately 2 mΩ + approximately 0.07 μH
	5 A input element: Approximately 100 mΩ + approximately 0.07 μH • External current sensor input: Approximately 1 MΩ
nstantaneous maxim	um allowable input (20 ms or less)
	Voltage Peak voltage of 4 kV or RMS of 2 kV, whichever is lower
	Current
	 Direct input (50 A input element). Peak current of 450 A or RMS of 500 A, whichever is lower Direct input (7.6 input element). Peak current of 00 A or RMS of 15 A
	Direct input (5 A input element): Peak current of 30 A or RMS of 15 A, whichever is lower
Instantaneous maxim	External current sensor input: Peak current is less than 10 times the range um allowable input (1 second or less)
	Voltage
	Current
	 Direct input (50 A input element): Peak current of 150 A or RMS of 55 A, whichever is lower
	 Direct input (5 A input element): Peak current of 10 A or RMS of 7 A, whichever is lower
·	External current sensor input: Peak current is less than 10 times the range
continuous maximum	Voltage
	Peak voltage of 2 kV or RMS of 1.1 kV, whichever is lower If the frequency of the input voltage exceeds 100 kHz (1200-f) Vrms or less
	The letter f indicates the frequency of the input voltage and the unit is kHz.
	Direct input (50 A input element): Peak current of 150 A or RMS of 55 A,
	 whichever is lower Direct input (5 A input element): Peak current of 10 A or RMS of 7 A,
	 External current sensor input: Peak current is less than 5 times the range
Continuous maximum	common mode voltage
(50/60HZ)	Current input terminals: 1000 Vrms Current input terminals (with /EX option):
	1000 Vrms (Maximum allowable voltage that can be measured) 600 Vrms (Rated voltage of EN61010-2-030 standard)
	Current input terminals (without /EX option): 1000 Vrms External current sensor input connector: 600 Vrms
Important Safety Not	te: Do not touch the inside of the BNC connector of the External Current Sensor input for
Rated voltage to grou	nd
	Voltage input terminals: 1000 V Current input terminals (with /EX option):
	1000 V (Maximum allowable voltage that can be measured) 600 V (Rated voltage of EN61010-2-030 standard)
	Current input terminals (without /EX option): 1000 V
Important Safety Not	the: Do not touch the inside of the BNC connector of the External Current Sensor input for
satety reasons. nfluence from comm	on voltage
	Apply 1000 Vrms for input terminal and case with the voltage input terminals shorted, the current input terminals open, and the external current sensor input terminals
	shorted.
	 Borto H2. ±0.01% of range 01 less Reference value up to 100 kH2: ±{(maximum rated range) / (rated range) × 0.001
	\times 1% or range) or less. For external current sensor input, add max. rated range / rated range \times {0.0125 \times log (f \times 1000)-0.021}% of range. However, 0.01% or
	more. The unit of f is kHz. The maximum rated range within the equation is 1000 V or 50 A or 5 A or 10 V.
Line filter	Select OFF, 100 Hz to 100 kHz (in increments of 100 Hz), 300 kHz, or 1 MHz
A/D converter	Simultaneous voltage and current input conversion
	Resolution: 16-bit Conversion speed (sampling period):
Range switching	Approximately 500 ns. See harmonic measurement items for harmonic measurement. A range can be set for each input element
Auto range functions	Range up
	 When the measured values of Urms and Irms exceed 110% of the range When the peak value of the input signal exceeds approximately 330% of the range
	(or approximately 660% for crest factor 6) Bange down
	When the following conditions are met, the range setting switches down.
	 When the measured values of U RMS and I RMS fall to 30% or less of the range When the measured values of U RMS and I RMS fall to 105% or less of the lower
	 range (range to which the range setting switches down) When the measured values of Upk and lpk fall to 300% or less of the lower range
	(600% or less for crest factor 6)

www.valuetronics.com

Specifications

)is	play
em	

em	Specification
splay	8.4-inch color TFT LCD display
tal number of pixels*	1024 (horizontal) × 768 (vertical) dots
splay update rate	Same as the data update rate.
	1) The display update interval of numeric display alone is 200 ms to 500 ms
	(which varies depending on the number of display items) when the data update rate is 50 ms, 100 ms, and 200 ms.
	2) The display update interval of display items other than numeric display
	(including custom displays) is approximately 1 second when the data update rate is 50 ms, 200 ms, and 500 ms.

*Up to approximately 0.002% of the pixels on the LCD may be defective

Display Items

Calculation Func	tions					
Measurement Function		Single-phase 3-wire	3-phase 3-wire	3-phase 3-wire (3-voltage 3-current measurement)	3-phase 4-wire	
Voltage U S [V]		(U1+U2)/2	(U1+U2+U3)/3			
Current I S [A]		(I1+I2)/2	(I1+I2+I3)/3			
Active power P [W]		P1+P2			P1+P2+P3	
Apparent Power S Σ [VA]	TYPE1 TYPE2	S1-S2	√3/2 (S1+S2)	√3/3 (S1+S2+S3)	S1+S2+S3	
	TYPE3	$\sqrt{P \Sigma^2 + Q \Sigma^2}$				
Reactive Power Q S	TYPE1	Q1+Q2			Q1+Q2+Q3	
[var]	TYPE2	$\sqrt{S \Sigma^2 - P \Sigma^2}$				
	TYPE3	Q1+Q2		Q1+Q2+Q3		
Corrected Power Pc S	[W]	Pc1+Pc2			Pc1+Pc2+Pc3	
Integrated Power WP [Wh]	WP1+WP2			WP1+WP2+WP3	
Integrated Power (Posi	itive)	When WPTYPE	is set to CHARGE/	DISCHARGE		
WP+ Σ [Wh]		WP+1+WP+2	WP+1+WP+2+WP+3			
		When WPTYPE is set to SOLD/BOUGHT Whenever data is updated, only the positive value of active power WP Σ is added				
Integrated Power (Neg	ative)	When WPTYPE	is set to CHARGE/	DISCHARGE		
WP- Σ [Wh]		WP-1+WP-2			WP-1+WP-2+WP-3	
		When WPTYPE is set to SOLD/BOUGHT Whenever data is updated, only the negative value of active power WP Σ is added				
Integrated Current q S	[Ah]	q1+q2			q1+q2+q3	
Integrated Current (Positive) q+[Ah]		q+1+q+2			q+1+q+2+q+3	
Integrated Current (Ne q-Σ[Ah]	gative)	q-1+q-2			q-1+q-2+q-3	
Integrated reactive Power WQ S [varh]		$\frac{1}{N}\sum_{n=1}^{N}I\left(\Omega\Sigma\left(n\right)I\times\text{Time}\right)$				
		$Q \; \Sigma \; (n)$ indicates the Σ function of the nth reactive power, N indicates the number of data updates, and the unit of Time is h				
Integrated apparent Po WS ∑ [VAh]	ower	$\left \frac{1}{N}\sum_{n=1}^{N}S\Sigma(n)\times Time\right $				
		S Σ (n) indicates the Σ function of the nth apparent power, N indicates the number of data updates, and the unit of Time is h				
Power Factor S		ΡΣ/SΣ				
Phase angle Ø Σ [°]		COS-1 (ΡΣ/SΣ)			
Note 1) The instrument	t's appare	ent power (S), re	eactive power (Q), j	power factor (λ), and p	hase difference (Ø)	

(However, reactive power is calculated directly from sampled data when TYPE3 is selected.) Therefore,

when distorted waveforms are input, these values may be different from those of other measuring

instruments based on different measuring principals. Note 2 interview of the order measuring instruments based on different measuring principals. Note 2) The value of Q for each phase in the Q Σ calculation is calculated with a preceding minus sign (-) when the current input leads the voltage input, and a plus sign when it lags the voltage input, so the value of Q Σ may be negative.

Numerical Display

easurement functi	ons obtained for each input element
em	Symbol and Meaning
oltage (V)	Urms: True RMS value, Umn: Rectified mean value calibrated to the RMS value, Udc: Simple mean value, Urmn: Rectified mean value, Uac: AC component
urrent (A)	Urms: True RMS value, Imn: Rectified mean value calibrated to the RMS value, Idc: Simple mean value, Irmn: Rectified mean value, Iac: AC component
ctive power (W)	Р
oparent power (VA)	S
eactive power (var)	Q
ower factor	λ
nase angle (°)	Ø
equency (Hz)	fU (FreqU): Voltage frequency, fl (FreqI): Current frequency Three fU and fl of all elements included can be measured simultaneously. A frequency measurement option allows you to simultaneously measure all fU and flof all elements. Unselected signals are displayed with "" indicating no data.
aximum and minimu	m voltage values (V)
	U+pk: Maximum voltage value, U-pk: Minimum voltage value
aximum and minimu	m current values (A)
	I+pk: Maximum current value, I-pk: Minimum current value
aximum and minimu	m power values (W)
	P+pk: Maximum power value, P-pk: Minimum power value
est factor	CfU: Voltage crest factor, CfI: Current crest factor
prrected power (W)	Pc Applicable standards IEC76-1 (1976), IEC76-1 (1993)
legration	Time: Integration time WP: Sum of the amount of both positive and negative power WP+: Sum of positive P (amount of power consumed) WP-: Sum of negative P (amount of power returned to the grid) q: Sum of the amount of both positive and negative current q+: Sum of negative I (amount of current) WS: Amount of apparent power WQ: Amount of pactive power However, the amount of current is integrated by selecting any one of Irms,Imn,Idc,Iac, and Irmn depending on the setting of the current mode.

Specifications

Measurement function (Σ function) obtained for each connected unit ($\Sigma A, \Sigma B, \Sigma C$)

nem	Symbol and meaning
Voltage (V)	$\label{eq:umssignable} \begin{array}{l} \text{Urms}\Sigma: \text{Frue RMS value, Umn}\Sigma: \text{Rectified mean value calibrated to the RMS value, Udc}\\ \Sigma: \text{Simple mean value, Urmn: Rectified mean value, Uac}\Sigma: \text{AC component} \end{array}$
Current (A)	Irms Σ : True RMS value, Imn Σ : Rectified mean value calibrated to the RMS value, Idc Σ : Simple mean value, Irmn Σ : Rectified mean value, Iac Σ : AC component
Active power (W)	ΡΣ
Apparent power (VA)	SΣ
Reactive power (var)	QΣ
Power factor	λΣ
Corrected power (W)	Pc Σ Applicable standards IEC76-1 (1976), IEC76-1 (1993)
Integration	Time Σ : Integration time WP Σ : Sum of the amount of both positive and negative power WP+ Σ : Sum of positive P (amount of power consumed) WP- Σ : Sum of negative P (amount of power returned to the grid) q Σ : Sum of the amount of both positive and negative current

- $\begin{array}{l} q \geq z & \text{sourd of negative I (amount of current)} \\ q + \Sigma & \text{sourd of negative I (amount of current)} \\ ws \Sigma & \text{integration of S} \Sigma \\ wq \Sigma & \text{integration of Q} \Sigma \end{array}$

Harmonic Measurement (Option)

Measurement functi	on obtained for each input element
Item	Symbol and Meaning
Voltage (V)	U (k): RMS value of the harmonic voltage of order k ⁺¹ , U: Voltage RMS value (Total value ⁺²)
Current (A)	I (k): RMS value of the harmonic current of order k, I: Current RMS value (Total value)
Active power (W)	P (k): Active power of the harmonic of order k, P: Active power (Total value)
Apparent power (VA)	S (k): Apparent power of the harmonic of order k, S: Total apparent power (Total value)
Reactive power (var)	Q (k): Reactive power of the harmonic of order k, Q: Total reactive power (Total value)
Power factor	λ (k): Power factor of the harmonic of order k, λ : Total power factor (Total value)
Phase angle (°)	 Ø (k): Phase angle between the harmonic voltage and current of order k, Ø: Total phase angle Ø U (k): Phase angle of each harmonic voltage U (k) relative to the fundamental wave U (1) Ø I (k): Phase angle of each harmonic current I (k) relative to the fundamental wave I (1)
Impedance of the load	circuit (Ω)
	Z (k): Impedance of the load circuit for the harmonic of order k
Resistance and reacta	nce of the load circuit (Ω)
	 Rs (k): Resistance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in series Xs (k): Reactance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in series Rp (k): Resistance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in parallel Xp (k): Reactance of the load circuit to the harmonic of order k when the resistance R, the inductance L, and the capacitor C are connected in parallel Xp (k): Reactance of the load circuit to the harmonic of order k when the resistance R, the inductance L and the capacitor C are connected in parallel
Hormonia content [0/1	Libde (I/c): Ratio of the hermonic voltage II (I/c) to II (1) or II
	Ind (k): Ratio of the harmonic voltage 0 (k) to 0 (1) of 0 Ind (k): Ratio of the harmonic current I (k) to 1 (1) or 1 Phdf (k): Ratio of the active harmonic power P (k) to P (1) or P
Total harmonic distort	ion [%]
	Uthd: Ratio of the total harmonic "3 voltage to U (1) or U Ithd: Ratio of the total harmonic current to I (1) or I Pthd: Ratio of the total harmonic active power to P (1) or P
Telephone harmonic fa	actor
	Uthf: Voltage telephone harmonic factor, Ithf: Current telephone harmonic factor Applicable standard: IEC34-1 (1996)
Telephone influence fa	actor
	Utif: Voltage telephone influence factor, Itif: Current telephone influence factor Applicable standard: IEEE Std 100 (1996)
Harmonic voltage fact	or *4 hvf: harmonic voltage factor
Harmonic current fact	Or *4
	hcf: harmonic current factor
K-factor	Ratio of the sum of the squares of weighted harmonic components to the sum of the squares of the orders of harmonic current
*1: Order k is an integ DC current comport the 500th order de *2: The total value is c components (from can be added to th *3: The total harmonic limit value for the *4: The equations may	er in the range from 0 to the upper limit value for the measured order. The 0th order is a nent (dc). The upper limit value for the measured order is automatically determined up to pending on the frequency of the PLL source. alculated by obtaining the fundamental wave (the 1st order) and all harmonic the 2nd order to the upper limit value for the measured order). Also, the DC component (dc) e equation. is calculated by obtaining the total harmonic component (from the 2nd order to the upper measured order) vary depending on the definitions in the standards, etc. Check the standards for details.
Measurement functi and current between This is a measuremen	on indicating the phase difference of the fundamental wave between the voltage n input elements If function indicating the phase angle of the fundamental wave U(1) or I(1) of another
element to the fundament to the connected unit. combination of the ele	The following table shows measurement functions for the connected unit with a ments 1, 2, and 3.
Item	Symbol and Meaning

Phase angle 01-02 (*)	001-02:	2 to the fundamental wave (U2 (1)) of the voltage of the element
Phase angle U1-U3 (°)	ØU1-U3:	Phase angle of the fundamental wave (U3 (1)) of the voltage of the element
		3 to U1 (1)
Phase angle U1-I1 (°)	ØU1-I1:	Phase angle of the fundamental wave (I1 (1)) of the current of the element 1
J		to U1 (1)
Phase angle U2-I2 (°)	ØU2-I2:	Phase angle of the fundamental wave (I2 (1)) of the current of the element 2
• • • • •		to U2 (1)
Phase angle U3-I3 (°)	ØU3-I3:	Phase angle of the fundamental wave (I3 (1)) of the current of the element 3
		to U3 (1)
EaU1 to EaU6 (°), Eal1	to Eal6 (°)
	Dhoon of	, and a state fundamental waves of 111 to 10 based on the rise of the 7 terminal

Phase angle Ø of the fundamental waves of U1 to I6 based on the rise of the Z terminal input in the motor evaluation function (option). N is the set value for the number of poles in the motor evaluation function.

Delta Calculation (Option) Item Volta

Item	Delta Calculation Setting	Symbol and Meaning
Voltage (V)	difference	∆ U1: Differential voltage between u1 and u2 determined by computation
	3P3W->3V3A	△ U1: Line voltage that is not measured but can be computed for a three-phase, three-wire system
	DELTA->STAR	Δ U1, Δ U2, Δ U3: Phase voltage that can be computed by a three-phase, three-wire (3V3A) system Δ U $\Sigma = (\Delta$ U1 + Δ U2 + Δ U3)/3
	STAR->DELTA	Δ U1, Δ U2, Δ U3: Line voltage that can be computed for a three-phase, four-wire system Δ U $\Sigma = (\Delta$ U1 + Δ U2 + Δ U3)/3
Current (A)	difference	Δ I1: Differential current between i1 and i2 determined by computation
	3P3W->3V3A	∆ I: Phase current that is not measured
	DELTA->STAR	∆ I: Neutral line current
	STAR->DELTA	∆ I: Neutral line current
Power (W)	difference	
	3P3W->3V3A	
	DELTA->STAR	Δ U1, Δ U2, Δ U3: Phase power determined by computation for a three-phase, three-line (3V3A) system Δ P $\Sigma = \Delta$ P1 + Δ P2 + Δ P3
	STAR->DELTA	

Waveform/Trend

Item	Specification
Waveform display	Displays the waveforms of the voltage and current from elements 1 through 6, torque, speed, AUX1, and AUX2.
Trend display	Displays trends in numerical data of the measurement functions in a sequential line graph. Number of measurement channels: Up to 16 parameters
Bar Graph/Vec	tor (Option) Specification
Bar graph display	Displays the size of each harmonic in a bar graph.
Vector display	Displays the vector of the phase difference in the fundamental waves of voltage and

graph display	Displays the size of each harmonic in a bar graph.
tor display	Displays the vector of the phase difference in the fundamental waves of voltage and current.

Accuracy

Voltage and Cur	rrent		
Item	Specification		
Accuracy (six-month)	Conditions Temperature: 23±5°C, Humidity: 30 to 75%RH, Input waveform: Sine wave, Power factor (Å): 1, Common mode voltage: 0 V, Crest factor: 3, Line filter: OFF Frequency filter: 1 kHz or less when ON, after warm-up. After zero level compensation or range value changed while wired. The unit of f within the accuracy equation is kHz.		
	Voltage		
	Frequency	Accuracy ±(Measurement reading error + Setting range error)	
	DC	±(0.05% of reading + 0.1% of range)	
	$0.1 \text{ Hz} \le f < 10 \text{ Hz}$	$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range})$	
	10 Hz ≤ f < 45 Hz	$\pm (0.1\% \text{ of reading} + 0.1\% \text{ of range})$	
	45 Hz ≤ f ≤ 66 Hz	$\pm (0.1\% \text{ of reading} + 0.05\% \text{ of range})$	
	66 Hz < f ≤ 1 kHz	$\pm (0.1\% \text{ of reading} + 0.1\% \text{ of range})$	
	$1 \text{ kHz} < f \le 50 \text{ kHz}$	$\pm (0.3\% \text{ of reading} + 0.1\% \text{ of range})$	
	50 kHz < f ≤ 100 kHz	$\pm (0.6\% \text{ of reading} + 0.2\% \text{ of range})$	
	100 kHz < f ≤ 500 kHz	$\pm \{(0.006 \times f)\% \text{ of reading} + 0.5\% \text{ of range}\}$	
	500 kHz < f ≤ 1 MHz	$\pm \{(0.022 \times f - 8)\% \text{ of reading} + 1\% \text{ of range}\}$	
	Frequency bandwidth	5 MHz (-3 dB, typical)	
	Quant		
	Gurrent	A	
	Frequency	+(Measurement reading error + Setting range error)	
	DC	\pm (0.05% of reading \pm 0.1% of range)	
	01 Hz = f < 10 Hz	$\pm (0.05\% \text{ or reading} \pm 0.2\% \text{ of range})$	
	10 Hz of < 45 Hz	$\pm (0.1\% \text{ of reading} \pm 0.2\% \text{ of range})$	
	10 112 ≤ 1 < 45 112 45 Hz → f → 66 Hz	$\pm (0.1\% \text{ of reading} \pm 0.1\% \text{ of range})$	
	4J112 ≤ 1 ≤ 00112 66 Hz < f = 1 kHz	$\pm (0.1\% \text{ of reading} \pm 0.05\% \text{ of range})$	
		Direct input of the SO A input velocity element $\pm(0.2\% \text{ of reading} + 0.1\% \text{ of range})$	
	1 kHz < f ≤ 50 kHz	$\begin{array}{l} \pm (0.3\% \text{ of reading } + 0.1\% \text{ of range}) \\ 50 \text{ mV, 100 mV, 200 mV range of the external current sensor input \\ \pm (0.5\% \text{ of reading } + 0.1\% \text{ of range}) \\ \text{Direct input of the 50 A input element} \\ \pm \{(0.1 \times f + 0.2)\% \text{ of reading } + 0.1\% \text{ of range}\} \end{array}$	
	50 kHz < f ≤ 100 kHz	\pm (0.6% of reading + 0.2% of range) Direct input of the 50 A input element \pm {(0.1 × f + 0.2)% of reading + 0.1% of range}	
	100 kHz < f ≤ 200 kHz	\pm {(0.00725 × f - 0.125)% of reading + 0.5% of range} Direct input of the 50 A input element \pm {(0.05 × f + 5)% of reading + 0.5% of range}	
	200 kHz < f ≤ 500 kHz	±{(0.00725 × f - 0.125)% of reading + 0.5% of range} Direct input of the 50A input element: It does not define accuracy.	
	500 kHz < f ≤ 1 MHz	$\pm \{(0.022 \times f - 8)\% \text{ of reading} + 1\% \text{ of range}\}$ Direct input of the 50A input element : It does not define accuracy.	
	Frequency bandwidth	5 MHz (-3 dB, typical) 5 A input element External current sensor input of the 50 A input element	

Accuracy (six-month)	Conditions	Same as the accuracy of the voltage and current
	Frequency	Accuracy
	DC	±(Reading error + Measurement range error)
	01 Hz < f < 10 Hz	$\pm (0.05\% \text{ of reading} + 0.1\% \text{ of range})$
	10 Hz < f < 45 Hz	$\pm (0.5\% \text{ of reading} \pm 0.2\% \text{ of range})$
	45 Hz < f < 66 Hz	$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range})$
	66 Hz < f < 1 kHz	$\pm (0.2\% \text{ of reading} \pm 0.1\% \text{ of range})$
	$1 \text{ kHz} < f \le 50 \text{ kHz}$	$\pm (0.3\% \text{ of reading} \pm 0.2\% \text{ of range})$
		50 mV, 100 mV, 200 mV range of the external current sensor input
		$\pm (0.5\% \text{ of reading} + 0.2\% \text{ of range})$
		Direct input of the 50 A input element
	50 kHz of a 100 kHz	$\pm \{(0.1 \times 1 + 0.2)\% \text{ of reading} + 0.2\% \text{ of range}\}$
	JU KIIZ < I S 100 KIIZ	Direct input of the 50 A input element
		$\pm \{(0.3 \times f - 9.5)\% \text{ of reading} + 0.3\% \text{ of range}\}$
	$100 \text{ kHz} < f \le 200 \text{ kHz}$	±{(0.0105 × f - 0.25)% of reading + 1% of range}
		Direct input of the 50 A input element
	000 klla . f . 500 klla	$\pm \{(0.09 \times 1 + 11)\% \text{ of reading} + 1\% \text{ of range}\}$
	200 KHZ < I ≤ 300 KHZ	±{(U.U1U3 × 1 - U.23)% 01 reading + 1% 01 range} Direct input of the 50Å input element: It does not define
		accuracy.
	500 kHz < f ≤ 1 MHz	$\pm \{(0.048 \times f - 20)\% \text{ of reading} + 2\% \text{ of range}\}$
		Direct input of the 50A input element: It does not define
		accuracy.
· Add the following va	lue to the above accuracy	y for the external current sensor range.
Current DC accuracy	/: 50 µV	appear range rating) 100% of range
 Add the following value 	lue to the above accuracy	v for the direct current input range
50 A input element		y for the uncer current input range.
Current DC accura	acy: 1 mA	
Power DC accurac	cy: (1 mA/Direct current i	nput range rating) × 100% of range
Current DC accura	acv: 10 uA	
Power DC accurac	cy: (10 µA/Direct current	input range rating) × 100% of range
 Accuracy of the way 	eform display data, Upk	and lpk
Add the following va	lue to the above accuracy	(reference value). The effective input range is within ±300% of
Voltage input: {1.5	$5 \times \sqrt{(15/range)} + 0.5\%$	of range
Direct current input	ut range	, rango
50 A input elem	ent; 3 × √(1/range)}% of	range + 10 mA
5 A input eleme	nt: {10 × v(10 m/range) +	+ 0.5}% of range
50 mV to 200 m	NV range: $\{10 \times \sqrt{0.01}/rai$	nge) $+ 0.5$ % of range
500 mV to 10 V	range: {10 × √(0.05/rang	je) + 0.5}% of range
 Influence from a ten 	nperature change after ze	ero level compensation or range change
Add the following va	IUE to the above accuracy	/.
DC accuracy of th	e direct current input	
50 A input elem	ent: 1 mA/°C	
5 A input eleme	nt: 10 µA/°C	
DC accuracy of the e	Influence from the voltage	DUC 50 μV/°C 10 × Influence from the current
 Influence from the s 	elf-heating caused by vol	tage input
 Add the following value 	lue to the voltage and po	wer accuracy.
AC input signal: 0.	.0000001 × U ² % of read	ing
U is the voltane re	.0000001 × 0* % 01 read ading (V).	mig + 0.0000001 × 0° % 011dily€
The influence from t	he self-heating continues	s until the temperature of the input resistor decreases, even if the
voltage input change	es to a small value.	
 Influence from the s Add the following was 	erreating caused by cur	rrent input
Act input signal. 0	$100006 \times ^2$ % of reading	wer accuracy of the 50 A element.
DC input signal: 0.	$.00006 \times I^2$ % of reading	+ 0.004 × I ² mA
Add the following va	lue to the current and pov	wer accuracy of the 5 A element.
AC input signal: 0.	$.006 \times I^2$ % of reading	0.004 12.0/ -4
Lis the current readi	.006 × I ² % of reading + (0.004 × I ² % of reading
The influence from t	he self-heating continues	until the temperature of the shunt resistor decreases, even if
the current input cha	anges to a small value.	
 Addition to the accu Add 0.1% of reading 	racy according to the dat	a update rate
Auu U.1% Of reading Bange of guarantee	d accuracy by frequency	voltage and current
All accuracies betwe	een 0.1 Hz and 10 Hz are i	reference values.
If the voltage exceed	ds 750 V at 30 kHz to 100	kHz, the voltage and power values are reference values.
If the current exceed	is 20 A at DC, 10 Hz to 45	5 Hz, or 400 Hz to 100 kHz, the current and power accuracies are
 Accuracy for crest free 	actor 6: Same as the rand	be accuracy of crest factor 3 for twice the range
		go accuracy of orose ration o for twist the fallys.
Itom	Specification	
	opconication	
Influence of Dower fac	TOP (A)	

Power Item

Specification

$ \begin{array}{c} \mbox{Influence of power factor } (\lambda) & \mbox{When } \lambda = 0 & \mbox{Apparent power reading } \times 0.1\% \mbox{ for the range from 45 to 66 Hz} & \mbox{For frequencies other than the above (Reference values)} & 5 \mbox{ Apparent power reading } \times (0.1 + 0.05 \times f \mbox{(Hz)})\% & \mbox{Direct input of the 50 A input element:} & \mbox{Apparent power reading } \times (0.1 + 0.05 \times f \mbox{(Hz)})\% & \mbox{Direct input of the 50 A input element:} & \mbox{Apparent power reading } \times (0.1 + 0.3 \times f \mbox{(Hz)})\% & \mbox{When } 0 < \lambda < 1 & \mbox{Power range/Apparent power reading error \%} + \mbox{(Power range Apparent power reading + (10 + 0.4 \times f \mbox{(Hz)})\% & \mbox{When } 0 < \lambda < 1 & \mbox{Power range/Apparent power reading } + \mbox{(Influence \% w $\@ is the phase angle between the voltage and current.} & \mbox{When the cutoff frequency (fc) is 100 Hz to 100 \text{ Hz} & \mbox{Voltage/current} & Up to (fc2) Hz. Add 2 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	b) × rhen $\lambda = 0)]]$
$\label{eq:hardward} \begin{array}{llllllllllllllllllllllllllllllllllll$	$b_{0}^{\prime} \times hen \lambda = 0) \}]$
$\label{eq:constraint} \begin{array}{l} \mbox{Apparent power reading \times 0.1\% for the range from 45 to 66 Hz For frequencies other than the above (Reference values) $$ 5 A input element tand external sensor inputs: Apparent power reading \times (0.1 + 0.05 \times f (kHz))\% Direct input of the 50 A input element: Apparent power reading \times (0.1 + 0.3 \times f (kHz))\% When $0 < $\lambda < 1$ Power reading \times (0.1 + 0.3 \times f (kHz))\% When $0 < $\lambda < 1$ Power reading \times (0.1 + 0.05 \times f (kHz))\% When $0 < $\lambda < 1$ Power reading \times (Power reading error %) + (Power range error % (Power range Apparent power the voltage and current. Influence of line filter When the cutoff frequency (fc) is 100 Hz to 100 KHz Voltage/current Up to (fc/2) Hz: Add 2 \times [1 - v(1/(1 + (ffc) ^{4})] \times 100 + (20 \times f/300 \times for λ and $$	6) × rhen λ = 0)}]
$ \begin{array}{c} \text{5 A input element and external sensor inputs:} \\ \text{Apparent power reading } < (0.1 + 0.05 \times f (\text{kHz}))\% \\ \text{Direct input of the 50 A input element:} \\ \text{Apparent power reading } \times (0.1 + 0.3 \times f (\text{kHz}))\% \\ \text{When } 0 < \lambda < 1 \\ \text{Power reading } \times [(\text{Power reading error \%}) + (\text{Power range error \%}) \\ (\text{Power range/Apparent power reading}) + (\tan \emptyset \times (\text{Influence \% w} \\ \emptyset \text{ is the phase angle between the voltage and current.} \\ \hline \text{Influence of line filter} \\ \text{When the cutoff frequency (fc) is 100 Hz to 100 \text{ kHz}} \\ \text{Voltage/current} \\ \text{Up to (fc/2) Hz. Add } 2 \times [1 - \sqrt{1}/(1 + (fr(fc)^{+})] \times 100 + (20 \times f/300) \\ \end{array} $	$_{(hon \ \lambda = 0)}^{(a) \ imes }$
$\label{eq:when 0 < λ < 1$} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	6) × /hen λ = 0)}]
Power reading × [(Power reading error %) + (Power range error %) (Power range/Apparent power reading) + (Ian Ø × (Influence % w Ø is the phase angle between the voltage and current. Influence of line filter When the cutoff frequency (fc) is 100 Hz to 100 KHz Voltage/current Up to (fc/2) Hz: Add 2 × [1 - v[1/(1 + (fr(c) +]) × 100 + (20 × f/300	$(b) \times (hen \lambda = 0)$
$ \begin{array}{ll} \mbox{Influence of line filter} & \mbox{When the cutoff frequency (fc) is 100 Hz to 100 kHz} \\ & \mbox{Voltage/current} \\ & \mbox{Up to (fc/2) Hz: Add 2 \times [1 - \sqrt{1/(1 + (f/fc)^4)}] \times 100 + (20 \times f/300) \\ \end{array} $	
Voltage/current Up to (fc/2) Hz: Add 2 × [1 - v[1/(1 + (f/fc) ⁴]] × 100 + (20 × f/300	
Power	k)% of reading
Up to (fc/2) Hz: Add $4 \times [1 - \sqrt{1/(1 + (f/fc)^4)}] \times 100 + (40 \times f/300)$ When the cutoff frequency (fc) is 300 kHz and 1 MHz	k)% of reading
Voltage/current	
Up to (fc/10) Hz: Add (20 × f/fc)% of reading	
Power Up to (fc/10) Hz: Add (40 \times f/fc)% of reading	
Lead/lag phase detection (D (LEAD)/G (LAG) of the phase angle)	-
The phase lead and lag can be detected correctly when the voltage a input signals are as follows.	nd current
 Sille wave S0% or more of the measurement range (100% or more for crest factor) 	actor 6)
 Frequency: 20 Hz to 10 kHz Phase angle: ±(5° to 175°) 	10101 0)
Symbol s for the reactive power Q S calculation	
The symbol s shows the lead/lag of each element, and "-" indicates I	eading.
Temperature coefficient ±0.03% of reading/°C at 5 to 18°C or 28 to 40°C	×

www.valuetronics.com

Specifications

Effective input range	Udc and Idc: 0 to ±110% of the Urms and Irms: 1 to 110% of the	measuremer measureme	nt range			
	Umn and Imn: 10 to 110% of the measurement range					
	Urmn and Irmn: 10 to 110% of the measurement range					
	Power					
	DC measurement: 0 to ±110	DC measurement: 0 to ±110%				
	AC measurement: ±110% of the power range when the voltage and current range is 1 to 110%.					
	However, the synchronization so frequency measurement. Each of	ource level sh of the lower l	nall meet tl imits is do	he input si ubled for c	gnal level o rest factor	of 6.
Max. display value	140% of the voltage and current	t range ratin	g			
Min. display value	Displays the following values rel	ative to the r	neasurem	ent range.		
	 Urms, Uac, Irms, Iac: Up to 0.3 	3% (up to 0.6	5% for cres	st factor 6)	
	Umn, Urmn, Imn, Irmn: Up to 2	2% (up to 4%	o for crest	factor 6)		
	Below that, zero suppress.					
Measurement lower limit	frequency			t vuluo.		
	Data update rate:	50 ms	100 ms	200 ms	500 ms	
	Measurement lower limit freque	ncv: 45 Hz	25 Hz	12.5 Hz	5 Hz	
	Data update rate:	1s	2 s	5 s	10 s	20 s
	Measurement lower limit freque	ncy: 2.5 Hz	1.25 Hz	0.5 Hz	0.2 Hz	0.1 Hz
Accuracy of apparent power S						
	Voltage accuracy + Current accuracy	uracy				
Accuracy of reactive pow	Accuracy of reactive power Q					
	Accuracy of apparent power + $(\sqrt{(1.0004 - \lambda^2)}) - \sqrt{(1 - \lambda^2)}) \times 100\%$ of range					
Accuracy of power factor	λ					
	\pm [($\lambda - \lambda / 1.0002$) +lcosØ -cos {Ø + sin ⁻¹ (influence of power factor of power when				r when	
	$\lambda = 0\%/100)$] ±1 digit when vo	oltage and cu	urrent is at	rated inpu	it of the	
A	measurement range. Ø is the ph	ase differen	ce of volta	ge and cur	rent.	
Accuracy of phase angle	0 . [[.0] (==== 1 () (1 0000)] . ==	- 1 f / - fl				
	$\pm [10 - (\cos - 1 (\lambda / 1.0002)] + \sin \lambda = 0\%)/100] \text{ deg } \pm 1 digit, when the second second$	en voltage ar	nd current	is at the ra	ated input o	en of the
	Multiply the reading error of the	oiv month o	oouroov bi	o footor o	f 1 E	
Une-year accuracy	wurupiy the reduing error of the	SIX-IIIOIIUI a	ccuidCy Dy	a lacior u	011.0	

Functions

Measurement Functions and Conditions

Item	Specification
Crest factor	300 (relative to the minimum valid input)
	3 or 6 (when inputting the rated values of the measurement range)
Measurement period	Interval for determining the measurement function and performing calculations. • The measurement period is set by the zero crossing of the reference signal (synchronization source) excluding watt hour WP and ampere hour q during DC mode • Harmonic display The measurement period is from the beginning of the data update interval to 1024 or 8192 points at the harmonic sampling frequency.
Wiring	1P2W (single-phase, two-wire), 1P3W (single-phase, 3-wire), 3P3W (3-phase, 3-wire), 3P4W (3-phase, 4-wire), 3P3W (3V3A) (3-phase, 3-wire, 3-volt/3-amp measurement) However, the number of available wiring systems varies depending on the number of installed input elements.
Scaling	When inputting output from external current sensors, VT, or CT, set the current sensor conversion ratio, VT ratio, CT ratio, and power coefficient in the range from 0.0001 to 99999.9999.
Averaging	 The average calculations below are performed on the normal measurement parameters of voltage U, current I, power P, apparent power S, and reactive power O. Power factor A and phase angle are determined by calculating the average of P and S. Select exponential average Select an attenuation constant from 2 through 64. Moving average
	Select the number of averages from 8 through 64. • Harmonic measurement Only exponential averaging is available.
Data update rate	Select 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 2 s, 5 s, 10 s, or 20 s.
Response time	At maximum, twice the data update rate (only during numerical display)
Hold	Holds the data display.
Single	Executes a single measurement during measurement hold.
Zero level compensation	/Null
	Compensates the zero level. Null compensation range: ±10% of range

Compensates the zero level, Null compensation range: ±10% of ra Null can be set individually for each of the following input signals. • Voltage and current of each input element • Rotation speed and torque • AUX1 and AUX2

Frequency Measurement

Item	Specification		
Number of measurement	Select up to three frequencies of the voltage or current input to the input elements for measurement. If the frequency option is installed, the frequencies of the voltages and currents being input to all input elements can be measured.		
Measurement method	Reciprocal method		
Measurement range	Data update rate	Measuring range	
	50 ms 100 ms 200 ms 500 ms 1 s 2 s 5 s 10 s	$\begin{array}{l} 45 Hz \leq f \leq 1 MHz \\ 25 Hz \leq f \leq 1 MHz \\ 12.5 Hz \leq f \leq 500 kHz \\ 5 Hz \leq f \leq 200 kHz \\ 2.5 Hz \leq f \leq 200 kHz \\ 1.25 Hz \leq f \leq 100 kHz \\ 1.25 Hz \leq f \leq 50 kHz \\ 0.5 Hz \leq f \leq 20 kHz \\ 0.25 Hz \leq f \leq 10 kHz \\ 0.25 Hz \leq f \leq 10 kHz \\ \end{array}$	
Accuracy	20 S 0.15 HZ S 15 S HZ ±0.06% of reading ±0.1 HHZ When the input signal level is 30% or more of the measurement range (60% or more for crest factor 6). However: The input signal is 50% or more of the range. • The frequency is smaller or equal to 2 times of above lower frequency • 10 mA range setting of 5 A input element 1 A range setting of 50 A input element The 100 Hz frequency filter is 0N at 0.15 Hz to 100 Hz, and the 1 kHz frequency filter is 0N at 100 Hz to 1 kHz		
Display resolution 99999			
Min. frequency resolution 0.0001 Hz			
Frequency measurement f	ilter		
	Select OFF, 100 Hz or 1 kHz		
Integration			
Item	Specification		
Mode Select a mode from Manual, Standard, Continuous (repeat), Real Time Control Continuous (Repeat)		Standard, Continuous (repeat), Real Time Control	

Specifications

Integration timer Integration can be stopped automatically using the timer setting. 000 10000h00m00s	
Count over	If the integration time reaches the maximum integration time (10000 hours), or if the integration value reaches max/min display integration value ⁻¹ , the elapsed time and integration value is saved and the operation is stopped. *1: WP : ±999999 MWh q :±999999 MAh WS :±999999 MVAh WQ :±999999 MVAh
Accuracy	±(Normal measurement accuracy + 0.02% of reading)
Timer accuracy	±0.02% of reading

Harmonic Measurement (Option)

Item	Specification
Measured source	All installed elements
Method	PLL synchronization method (without external sampling clock function)
Frequency range	Fundamental frequency of the PLL source is in the range of 0.5 Hz to 2.6 kHz.
PLL source • Select the voltage or current of each input element or the external clock. • If the /G6 option is selected, two PLL sources can be selected, and dual harmonic measurement can be performed. If the /G5 option is selected, one PLL source is selectable. • Input level 15 V or more of range for voltage input. 50 mA or more of range for direct current input. 200 mV or more of range for external clock. 50 % or more of the measurement range rating for crest factor 3. 100% or more of the measurement range rating for crest factor 6. 20 Hz to 1 kHz for the 1 A or 2 A range of the som as with frequency measure. • The frequency filter ON condition is the same as with frequency measure.	
FFT data length	1024 when the data update rate is 50 ms, 100 ms, or 200 ms 8192 when the data update rate is 500 m, 1 s, 2 s, 5 s, 10 s, or 20 s
Window function	Rectangular
Anti-aliasing filter	Set using a line filter

Sample rate, window width, and upper limit of the measured order

1024 FFT points (data update rate 50 ms, 100 ms, 200 ms)

			Upper limit of measured order	
Fundamental frequency	Sampling rate	Window width	U, I, P, Ø, ØU, ØI or	other measured values
15 Hz to 600 Hz	f*1024	1	500th order	100th order
600 Hz to 1200 Hz	f*512	2	255th order	100th order
1200 Hz to 2600 Hz	f*256	4	100th order	100th order
However, the maximum r	measured order	is 100 at a date	update rate of 50 m	S.

8192 FFT points (data update rate 500 m, 1 s, 2 s, 5 s, 10 s, 20 s)

			Upper limit of measured order	
Fundamental frequency	Sampling rate	Window width	U, I, P, Ø, ØU, ØI or	other measured values
0.5 Hz to 1.5 Hz	f*8192	1	500th order	100th order
1.5 Hz to 5Hz	f*4096	2	500th order	100th order
5 Hz to 10 Hz	f*2048	4	500th order	100th order
10 Hz to 600 Hz	f*1024	8	500th order	100th order
600 Hz to 1200 Hz	f*512	16	255th order	100th order
1200 Hz to 2600 Hz	f*256	32	100th order	100th order

Frequency	Voltage	Current	Power
0.5 Hz ≤ f < 10 Hz	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
10 Hz ≤ f < 45 Hz	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
$45 \text{ Hz} \le f \le 66 \text{ Hz}$	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
66 Hz < f ≤ 440 Hz	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
440 Hz $<$ f \leq 1 kHz	0.05% of reading	0.05% of reading	0.1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
$1 \text{ kHz} < f \le 10 \text{ kHz}$	0.5% of reading	0.5% of reading	1% of reading
	+ 0.25% of range	+ 0.25% of range	+ 0.5% of range
$10 \text{ kHz} < f \le 100 \text{ kHz}$	0.5% of range	0.5% of range	1% of range
$100 \text{ kHz} \le f \le 260 \text{ kHz}$	1% of range	1% of range	2% of range

When the line filter is ON

Add the accuracy of the line filter to the accuracy of when the line filter is OFF

Specification

- All the items below apply to any of the tables.

 When hc crest factor is set to 3

 When h (power factor) = 1

 Power figures that exceed 2.6 kHz are reference values.

 For the voltage range, add the following values.

 Voltage accuracy: 25 mV

 Power accuracy: 25 mV/voltage range rating) × 100% of range

 For the vifteret current input range, add the following values.

 S A element

 Current accuracy: 50 μA

 Power accuracy: 50 μA

 Power accuracy: 50 μA

 Power accuracy: 4 mA

- Power accuracy: (30 µA/current range rating) × 100% of range
 50 A element
 Current accuracy: 4 mA
 Power accuracy: 4 mA/current range rating) × 100% of range
 For the external current sensor range, add the following values.
 Current accuracy: 2 mV
 Power accuracy: 2 mV/external current sensor range rating) × 100% of range
 Add (n/500)% of reading to the n-th component of the voltage and current, and add (n/250)% of reading to the n-th component of the power.
 Accuracy when the crest factor is 6: Same as when the range is doubled for crest factor 3
 The guaranteed accuracy range by frequency and voltage/current is the same as the guaranteed range of normal measurement.
 The adjacent orders of the input order may be affected by the side rope.
 For n-th order reading) to the (n+m)th order and (n-m)th order of the power.
 For n-th order creating) to the (n+m)th order and (n-m)th order of the power.
 For n-th order reading) to the (n+m)th order and (n-m)th order of the power.
 For n-th order reading) to the (n+m)th order and (n-m)th order of the power.

Motor Evaluation Function (Option)

Item	Specification
Input terminal	Torque, speed (A, B, Z)
Input resistance	Approximately 1 MΩ
Input connector type	Insulated BNC
Analog Input (Speed is input	to the A terminal)
Item	Specification
Range	1 V, 2 V, 5 V, 10 V, 20 V
Input range	±110%
Line filter	0FF, 100, 1 kHz
Continuous maximum allowable input	±22 V
Maximum common mode voltage	±42 Vpeak
Sampling rate	Approximately 200 kS/s
Resolution	16-bit
Accuracy	±(0.05% of reading + 0.05% of range)
Temperature coefficient	±0.03% of range/°C

Pulse Input

Speed is input to the A terminal if the direction is not detected. If the direction is detected, the A and B phases of the rotary encoder are input to the A and B terminals. The Z phase is input to the Z terminal of the rotary

neouer for electric angle measurement.	
em	Specification
nput range	±12 Vpeak
requency measurement range	2 Hz to 1 MHz
laximum common mode voltage	±42 Vpeak
ccuracy	±(0.05 + f/500)% of reading ±1 mHz
ise of the Z terminal input and electric angle n	neasurement start time
	Within 500 ns
etection level	H level: Approximately 2 V or more
	L level: Approximately 0.8 V or less
ulse width	500 ns or more

Harmonic measurement option (/G5 or /G6) is required for electric angle measurement

Auxiliary Input (Option)

tem	Specification
nput terminal	AUX1/AUX2
nput type	Analog
nput resistance	Approximately 1 M _Ω
nput connector type	Insulated BNC
lange	50 m, 100 m, 200 m, 500 m, 1 V, 2 V, 5 V, 10 V, 20 V
nput range	±110%
ine filter.	OFF/100 Hz/1 kHz
Continuous maximum allov	vable input
	±22 V
Common mode voltage	±42 V
Sampling rate	Approximately 200 kS/s
Resolution	16-bit
Accuracy	$\pm(0.05\%$ of reading + 0.05% of range) • Add 20 $\mu V/^{\circ} C$ to the change in temperature after zero level compensation or range change.
emperature coefficient	±0.03% of range/°C

DA Output and Remote Control (Option)

JA Output	
tem	Specification
/A conversion resolution	16-bit
lutput voltage	±5 V FS (max. approximately ±7.5 V) relative to each rated value
pdate rate	Same as the data update rate
lutput	20 channels (Output parameter can be set for each channel)
ccuracy	± (Accuracy of each measurement function +0.1% of FS) FS=5 V
1inimum load	100 kΩ
emperature coefficient	±0.05% of FS/°C
ontinuous maximum com	mon mode voltage
	±42 Vpeak or less

Remote Control

Item Signa EXT START, EXT STOP, EXT RESET, INTEG BUSY, EXT HOLD, EXT SINGLE, EXT PRINT Input leve 0 to 5 V

Calculation and Event Function

tem	Specification
Jser-defined function	Compute the numerical data (up to 20 equations) with a combination of measurement function symbols and operators.
Efficiency calculation	Up to 4 efficiencies can be displayed by setting measurement parameters for the efficiency equations.
Jser-defined event	Event: Set conditions for measured values. The functions triggered by the event are Auto Print, Store, and DA Output.

High Speed Data Capturing Function (Option)

ltem	Specification
Cycle of data capture	5ms (When External Sync OFF) 1ms to 100ms (When External Sync ON, It synchronized with external signal from MEAS START terminal)
Data update rate	1sec (It displays the last numeric data during the 1 sec period)
Meas. parameter	Voltage, Current, Power for each element and Sigma* Torque and speed /Pm (/MTR), AUX1 and AUX2 /AUX * select voltage/current measurement mode from DC /RMS /MEAN /R-MEAN
Wiring	Single phase 2 wire (DC signal), Three phase 3 wire (3V3A), Three phase 4 wire
Line Filter	Always ON (Cut off frequency is 300kHz and lower)
Data output	Internal RAM (approx. 30MB), external USB storage PC through GP-IB, Ethernet of USB communication I/F (Every 1 sec data block continuously)
Data measured time	1 to 10000000, or infinite
Data capturing start	Turn on STAT key of HS Setting menu Satisfy trigger conditions after received I/F command

Trigger	Mode: AUTO/NORMAL/OFF, Source:U1 to U6/I1 to I6/EXT,
	Slope: Rising edge/Falling Edge/both edges, Level: +/- 100.0%
HS filter	OFF, ON (Cut off: 1Hz to 1000Hz, 1Hz unit setting)

Display

iumencai Display				
tem	Specification			
isplay digit (display resolution)				
	less than 60000: 5 digits 60000 or more: 4 digits			
Number of display items	Select 4, 8, 16, Matrix, ALL, Harmonic Single List, Harmonic Dual List, and Custom			
Waveform Display				
tem	Specification			
Display format	Peak-to-peak con If the time axis is lacking data is fill	npression data set so that there will be insufficient sampling data, the part ed with the preceding sampling data.		
Sampling rate	Approximately 2 MS/s			
Time axis	Range from 0.05 ms to 2 s/div. However, 1/10 or less of the data update rate.			
Trigger	 Trigger type 	Edge type		
	 Trigger mode 	Select OFF, Auto, and Normal. Automatically turned OFF during integration.		
	 Trigger source 	Select voltage or current input to the input element or external clock		
	 Trigger slope 	Select Rise, Fall, or Rise/Fall		
	 Trigger Level 	Set the trigger level in the range of $\pm 100\%$ from the center of the screen (from top to bottom of the screen) if the trigger source is the voltage or current input to the input element. The set resolution is 0.1%.		
	 TTL level if the f 	trigger source is Ext Clk (external clock).		
ime axis zoom function Not available				
Waveforms can be repres	ented faithfully at i	up to approximately 100 kHz because the sampling rate is		

Data Store Function

Store	Store numerical data in media. (Media: USB storage device, max. 1 GB)				
Store interval	50 ms (when waveform display is OFF) to 99 hours 59 minutes 59 seconds				
Storage time when using	1 GB memory (Numerical Store and Wave	form Display OFF)			
Number of measurement channels	Number of Storage interval Storable tin measurement items (each channel)		Storable time (Approx.)		
3 ch	5	50 ms	5 days		
3 ch	20	50 ms	56 hours		
3 ch	Each harmo nic component data of DC to the 100th order of voltage, current, and power	50 ms	4 hours		
6 ch	5	1 sec	86 days		
6 ch	20	1 sec	24 days		
6 ch	Each harmonic component data of DC to the 100th order of voltage, current, and power		40 hours		
6 ch	Each harmonic component data of DC to the 100th order of voltage, current, and power	100 ms	49 minutes		

*One piece of data is 4 bytes, and the limit to the number of store operations is 9999999 counts.

File Function

Item	Specification	
Save	Save setting information, waveform display data, numerical data, and screen image data to media	
Read	ad Read the saved setting information from media.	

Auxiliary I/O

ster/ slave synchronization signals		
Specification		
BNC connector: Applicable to both master and salve		
TTL: Applicable to both master and slave		
time		
Within 15 sample intervals: Applicable to master		
Within 1 µs + 15 sample intervals: Applicable to slave		
ut		
Specification		
BNC connector		
TTL		
n source for normal measurement is used as the external clock for input		
Same as the measurement range of frequency measurement		
Square waveform with a duty ratio of 50%		
Square waveloini with a duty ratio of 30 %		
harmonic measurement is used as the external clock for input		
Specification		
Harmonic measurement (/G5 or /G6) option: 0.5 Hz to 2.6 kHz		
Square waveform with a duty ratio of 50%		
Specification		
1 µs		
Within (1 µs + 15 sample intervals)		
n)		

iab output (option)	
em	Specification
onnector type	D-sub 15-pin (receptacle)
utput format	Analog RGB output

A **USB for Peripheral Devices** It Co Арр An Po Built-in Printer (Option) **General Specifications** *Warning for Class A instruments This is a Class A instrument based on Emission standards EN61326-1 and EN55011, and is designed for an industrial environment. Operation of this equipment in a residential area may cause radio interference, in which case users will be responsible for any interference which they cause.

www.valuetronics.com

Computer Interface

It

Item	Specification
Compatible devices	National Instruments
	PCI-GPIB or PCI-GPIB+
	 PCIe-GPIB or PCIe-GPIB+
	 PCMCIA-GPIB and PCMCIA-GPIB+
	GPIB-USB-HS
	Use an NI-488.2M Version 1.60 or later driver
Electrical and mechanical	specifications
	Conforms to the IEE Standard 488-1978 (JIS C 1901-1987)
Functional specifications SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0	
Protocol	Conforms to the IEEE Standard 488.2-1992
Encoding	SO (ASCII)
Mode	Addressable mode
Address 0 to 30	
Clearing remote mode	Remote mode can be cleared by pressing the LOCAL key
	(except during Local Lockout)

inernet internace	
em	Specification
umber of communication	ports
	1
onnector type	RJ-45 connector
ectrical and mechanical	specifications
	Conforms to the IEEE802.3
ansmission method	Ethernet 1000BASE-T, 100BASE-TX, 10BASE-T
ommunication protocol	TCP/IP
plicable services	FTP server, DHCP, DNS, remote control (VXI-11), SNTP, FTP client
CD DC Interfeee	

Item	Specification	
Number of ports	1	
Connector	Type B connector (receptacle)	
Electrical and mechanic	al specifications	
	Conforms to the USB Rev. 2.0	
Applicable transfer stan	dards	
	HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps)	
Applicable protocols	USBTMC-USB488 (USB Test and Measurement Class Ver.1.0)	
Applicable system envir	onment	
	The PC must run the Japanese or English version of Windows 7 (32-bit), Vista (32-bit), or XP (SP2 or later, 32-bit), and be equipped with a USB port.	

em	Specification			
imber of ports	2			
nnector type	USB type A connector (receptacle)			
ectrical and mechanical s	pecifications			
	Conforms to USB Revision 2.0			
plicable transfer standar	ds			
	HS (High Speed) mode (480 Mbps), FS (Full Speed) mode (12 Mbps), LS (Low Speed) mode (1.5 Mbps)			
plicable devices	Mass storage device conforming to USB Mass Storage Class Version 1.1 109 and 104 keyboards conforming to USB HID Class Version 1.1 Mouse conforming to USB HID Class Version 1.1			
wer supply	5 V, 500 mA (for each port). However, devices that exceed the maximum current consumption of 100 mA cannot be connected to two ports simultaneously.			

m	Specification	
inting method	Thermal line dot method	
t density	8 dots/mm	
per width	80 mm	
fective recording width	72 mm	
to Print	Allows you to set the interval time for printing to automatically print the measured values. The start/stop time can also be set.	

em	Specification
arm-up time	Approximately 30 minutes
peration environment	Temperature: 5 to 40°C Humidity: 20 to 80%RH (no condensation)
perating altitude	2000 m or less
stallation location	Indoors
orage environment	Temperature: -25 to 60°C Humidity: 20 to 80%RH (no condensation)
ated power supply voltage	e
	100 to 240 VAC
lowable power supply vol	tage fluctuation range
	90 to 264 VAC
ated power supply freque	ncy
	50/60 Hz
lowable power supply fre	quency fluctuation range
	48 to 63 Hz
aximum power consumpt	ion
	150 VA (when using a built-in printer)
mensions (see s ection 12	2.13)
	Approximately 426 mm (W) \times 177 mm (H) \times 459 mm (D) (Excluding the handle and other projections when the printer is stored in the cover)
eight	Approximately 15 kg (including the main body, 6 input elements, and options)
attery backup	Setting information and built-in clock continue to operate with a lithium backup battery.

Typical Voltage/Current Connections

Measurement using current sensor

* A burden resistor is required for the CT1000, CT200, CT60, and 751574.

Model and Suffix Codes

Model	Suffix codes Description								
	WT1800 Single input element								
WT1801	-01	50 A							
WITTOUT	-10 5A								
		WT1	800 2 in	put elem	nents				
	-02	50 A	50 A						
WT1802	-11	5 A	50 A						
	-20	5 A	5 A						
		WT1	800 3 in	put elem	nents				
	-03	50 A	50 A	50 A					
WT1803	-12	5 A	50 A	50 A					
	-21	5 A	5 A	50 A					
	-30	5 A	5 A	5A	<u> </u>				
	04	WII	800 4 in	put elem	ients				
	-04	50 A	50 A	50 A	50 A				
WT1004	-13	5 A	50 A	50 A	50 A				
W11804	-22	5A EA	5A EA	DU A	50 A				
	-51	5A EA	5A EA	5A EA	50 A				
	-40	WT1	200 5 in		JA	<u> </u>			
	05	50 4	50 A		50 1	50 A	1		
	-03	50	50 A	50 A	50 A	50 A	-		
	-14	54	50	50 A	50 A	50 A	-		
WT1805	-32	5.4	54	54	50 A	50 A	-		
	-41	5.4	5.4	5.4	5 A	50 A	-		
	-50	5 A	5 A	5.4	5 A	5 A	-		
		WT1	800 6 in	put elem	nents	10/1	· · · ·		
	-06	50 A	50 A	50 A	50 A	50 A	50) A (
	-15	5 A	50 A	50 A	50 A	50 A	50) A (
	-24	5 A	5 A	50 A	50 A	50 A	50) A (
WT1806	-33	5 A	5 A	5 A	50 A	50 A	50) A (
	-42	5 A	5 A	5 A	5 A	50 A	50) A	
	-51	5 A	5 A	5 A	5 A	5 A	50) A	
	-60	5 A	5 A	5 A	5 A	5 A	5	A	
			Standar	d option					
	-D	UL/US/	A Standa	ra					
	P	AS cta	allualu						
Power cord	-n	PC cto	ndard						
	-u -H	GR sta	ndard						
	-N	NRR St	NBB Standard						
	-HF	English menu							
	-HG	Germa	German menu						
Languages	-HC	Chinese menu							
	-HR	Russia	n menu						
			Addition	al option	1				
	/EX1	Externa	al curren	t sensor	input fo	r WT1801			
	/EX2	Externa	al curren	t sensor	input fo	r WT1802	2		
	/EX3	External current sensor input for WT1803							
	/EX4	External current sensor input for WT1804							
	/EX5	External current sensor input for WT1805							
	/EX6	External current sensor input for W11806							
Ontions	/BD	Built-III printer							
options	/05	Similarnoone Dual Harmonic Measurement Select one							
		Delta Computation							
	/F0	Add-or	Freque	ncv Mea	suremen	t			
	/V1	RGB OI	Itnut	itoy wica	Garomon				
	/DA	20-channel DA Outputs							
	/MTR	Motor	Evaluatio	on Funct	ion			O al a at a	
	AUX	Auxilia	ry Senso	r Inputs				Select one	
	/HS	High s	beed dat	a captur	ing				

* The numbers in the "Description" column have the following meanings. 50 A: 50 A input element, 5 A: 5 A input element Elements are inserted in the order shown starting on the left side on the back. * GPIB, Ethernet and USB communication come standard.

Note: Adding input elements after initial product delivery will require rework at the factory. Please choose your models and configurations carefully, and inquire with your sales representative if you have any questions

Standard accessories Power cord, Rubber feet, current input protective cover, User's manual, expanded user's manual, Power cord, Rubber feet, current input protective cover, User's manual, expanded user's manual, communication interface user's manual, printer roll paper (provided only with /B5), connector (provided only with /DA) Safety terminal adapter 758931 (provided two adapters in a set times input element number)

User's manuals [Start guide (booklet), function /operation, communication manuals (electric file)]

okogawa

YOKOGAWA METERS & INSTRUMENTS CORPORATION

Global Sales Dept. /Phone: +81-42-534-1413 Facsimile: +81-42-534-1426 E-mail: tm@cs.jp.yokogawa.com

YOKOGAWA CORPORATION OF AMERICA YOKOGAWA EUROPE B.V.

Phone: (1)-770-253-7000, Fax: (1)-770-254-0928 Phone: (31)-88-4641000, Fax: (31)-88-4641111 YOKOGAWA ENGINEERING ASIA PTE. LTD. Phone: (65)-62419933, Fax: (65)-62412606

Accessory (sold separately)

Model/parts number	Product	Description	Order Q'ty	
758917	Test read set	A set of 0.8 m long, red and black test leads	1	
758922 🔺	Small alligator-clip	Rated at 300 V and used in a pair	1	
758929 🔺	Large alligator-clip	Rated at 1000 V and used in a pair	1	
758923	Safety terminal adapter	(spring-hold type) Two adapters to a set	1	
758931	Safety terminal adapter	(screw-fastened type) Two adapters to a set 1.5 mm hex Wrench is attached	1	
758921 🔺	Fork terminal adapter	Banana-fork adapter, Two adapters to a set	1	
701959	Safety mini-clip	Hook type, Two in a set	1	
758924 🔺	Conversion adapter	BNC-banana-jack (female) adapter	1	
366924 🔺	BNC-BNC cable	1 m	1	
366925 🔺	BNC-BNC cable	2 m	1	
B9284LK 🔺	External sensor cable	Current sensor input connector, Length 0.5 m	1	
B9316FX 🔺	Printer roll pager	Thermal paper, 10 meters (1 roll)	10	
Due to the nature of this product, it is possible to touch its metal parts. Therefore, there is a risk of electric shock, so the product must be used with caution. Use these products with low-voltage circuits (42 v or less).				

Rack Mount

Model	Product	Description
751535-E4	Rack mounting kit	For EIA
751535-J4	Rack mounting kit	For JIS

CT1000 AC/DC Current sensor Current: 1000 Apk Basic Accuracy: $\pm (0.05\% \text{ of rdg} + 30 \ \mu\text{A})$ Measurement Range: DC to 300 kHz Input/output ratio: 1500: 1

CT200 AC/DC Current sensor

Current: 60 Apk

unit: mm

Current: 200 Apk Basic Accuracy: \pm (0.05% of rdg + 30 µA) Measurement Range: DC to 500 kHz Input/output ratio: 1000: 1

Exterior WT1800

Current: 200 Apk

Yokogawa's Approach to Preserving the Global Environment -

- Yokogawa's electrical products are developed and produced in facilities that
- have received ISO14001 approval.
- In order to protect the global environment, Yokogawa's electrical products are designed in accordance with Yokogawa's Environmentally Friendly Product Design Guidelines and Product Design Assessment Criteria.

NOTICE

- Before operating the product, read the user's manual thoroughly for proper and safe operation.
- If this product is for use with a system requiring safeguards that directly involve personnel safety, please contact the Yokogawa sales offices.

Subject to change without notice. [Ed:04/b] Copyright ©2011 Printed in Japan, 401(KP)